From d31ea5a51f0cc17b0556423896b7b0b7b3c2c217 Mon Sep 17 00:00:00 2001 From: andreas128 Date: Tue, 29 Nov 2016 12:00:01 +0100 Subject: Add lut_generator.ipynb to generate a lut from a measurement --- lut_generator.ipynb | 184 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 184 insertions(+) create mode 100644 lut_generator.ipynb (limited to 'lut_generator.ipynb') diff --git a/lut_generator.ipynb b/lut_generator.ipynb new file mode 100644 index 0000000..489203f --- /dev/null +++ b/lut_generator.ipynb @@ -0,0 +1,184 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np, pandas as pd\n", + "import pickle\n", + "import os\n", + "\n", + "if not os.path.isdir(\"./lut_plot\"):\n", + " os.mkdir(\"./lut_plot\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def get_meas(path):\n", + " measurements = pickle.load(open(path, \"rb\"))\n", + " df = pd.DataFrame(measurements, columns=[\"ampl\",\"mag_gen_sq\",\"mag_feedback_sq\",\"phase_diff\"])\n", + " df[\"mag_gen\"] = np.sqrt(df[\"mag_gen_sq\"])\n", + " df[\"mag_feedback\"] = np.sqrt(df[\"mag_feedback_sq\"])\n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = get_meas(\"./measurements.pkl\")\n", + "df_lut = get_meas(\"./measurements_lut.pkl\")\n", + "df_lut_sq = get_meas(\"./measurements_lut_sq.pkl\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def get_slope(ampl, mag_feedback):\n", + " slope, intersect = np.polyfit(x = ampl[0:20], y = mag_feedback[0:20], deg = 1)\n", + " return slope, intersect\n", + "\n", + "#get_slope(df[\"ampl\"], df[\"mag_feedback\"])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def get_fac(ampl, mag_feedback):\n", + " slope, intersect = get_slope(df[\"ampl\", df[\"mag_feedback\"]])\n", + " return[(x*slope + intersect) / y for (x,y) in zip(df[\"ampl\"], df[\"mag_feedback\"])]\n", + "def interp(x): return np.interp(x, df[\"ampl\"], fac)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "x = np.linspace(0.1, 0.5, num = 50)\n", + "\n", + "plt.plot(df[\"ampl\"], df[\"mag_feedback\"], label=\"measurement\")\n", + "plt.plot(x, x*slope + intersect, label = \"linear model\")\n", + "\n", + "plt.legend(loc=0)\n", + "plt.title(\"Original Measurement\")\n", + "\n", + "plt.savefig(\"./lut_plot/original_measurement.png\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "slope, intersect = get_slope(df[\"ampl\"], df[\"mag_feedback\"])\n", + "\n", + "plt.plot(df_lut[\"ampl\"], df_lut[\"mag_feedback\"], label=\"measurement\")\n", + "plt.plot(x, x*slope + intersect, label = \"linear model\")\n", + "\n", + "plt.legend(loc=0)\n", + "plt.title(\"Lut Measurement\")\n", + "\n", + "plt.savefig(\"./lut_plot/lut_measurement.png\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "slope, intersect = get_slope(df[\"ampl\"], df[\"mag_feedback\"])\n", + "\n", + "plt.plot(df_lut_sq[\"ampl\"], df_lut_sq[\"mag_feedback\"], label=\"measurement\")\n", + "plt.plot(x, x*slope + intersect, label = \"linear model\")\n", + "\n", + "plt.legend(loc=0)\n", + "plt.title(\"Lut Squared Measurement\")\n", + "\n", + "plt.savefig(\"./lut_plot/lut_sq_measurement.png\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "slope, intersect = get_slope(df[\"ampl\"], df[\"mag_feedback\"])\n", + "\n", + "plt.plot(df[\"ampl\"], df[\"mag_feedback\"], label=\"measurement\")\n", + "plt.plot(df_lut[\"ampl\"], df_lut[\"mag_feedback\"], label=\"measurement lut\")\n", + "plt.plot(df_lut_sq[\"ampl\"], df_lut_sq[\"mag_feedback\"], label=\"measurement lut sq\")\n", + "plt.plot(x, x*slope + intersect, label = \"linear model\")\n", + "\n", + "plt.legend(loc=0)\n", + "plt.title(\"All Measurements\")\n", + "\n", + "plt.savefig(\"./lut_plot/all_measurement.png\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pickle.dump({\"ampl\":df[\"ampl\"],\"fac\":[f for f in fac]}, open(\"lut.pkl\", \"wb\"))\n", + "pickle.dump({\"ampl\":df[\"ampl\"],\"fac\":[f**2 for f in fac]}, open(\"lut_sq.pkl\", \"wb\"))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} -- cgit v1.2.3