aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rwxr-xr-xamplitude_ramp.py28
-rw-r--r--lut_generator.ipynb184
-rw-r--r--tcp_async.py4
3 files changed, 214 insertions, 2 deletions
diff --git a/amplitude_ramp.py b/amplitude_ramp.py
index 7672cda..7ef72e8 100755
--- a/amplitude_ramp.py
+++ b/amplitude_ramp.py
@@ -26,6 +26,7 @@ from gnuradio import gr
from gnuradio import uhd
from grc_gnuradio import blks2 as grc_blks2
import argparse
+import pickle
import time
import socket
import struct
@@ -50,6 +51,7 @@ def xrange(start, stop, step):
class RampGenerator(threading.Thread):
tcpa = None
+ lut_dict = None
def __init__(self, options, tcpa):
threading.Thread.__init__(self)
@@ -62,8 +64,19 @@ class RampGenerator(threading.Thread):
self.ampl_step = float(options.ampl_step)
self.ampl_stop = float(options.ampl_stop)
+ self.output_file = options.out
+
+ if not options.lut is '':
+ self.lut_dict = pickle.load(open(options.lut, "rb"))
+
self.tcpa = tcpa
+ def lut(self, ampl):
+ if self.lut_dict is None:
+ return 1
+ else:
+ return np.interp(ampl, self.lut_dict["ampl"], self.lut_dict["fac"])
+
def set_source_ampl(self, ampl):
self.event_queue_.put(ampl)
self.in_queue_.get()
@@ -95,12 +108,13 @@ class RampGenerator(threading.Thread):
measurements = []
for ampl in amplitudes:
+ ampl_lut = self.lut(ampl) * ampl
measurement_correct = False
max_iter = 10
while measurement_correct == False and max_iter > 0:
max_iter -= 1
- self.set_source_ampl(ampl)
+ self.set_source_ampl(ampl_lut)
mag_gen_sum = 0
phase_diff_sum = 0
@@ -140,6 +154,8 @@ class RampGenerator(threading.Thread):
print("Retry measurements")
+ name = self.output_file
+ pickle.dump(measurements, open(name, "wb"))
self.tcpa.stop()
self.event_queue_.put("done")
self.event_queue_.put(measurements)
@@ -182,6 +198,16 @@ parser.add_argument('--decim',
help='Interval in samples between when to take the average of the measurements',
required=False)
+parser.add_argument('--lut',
+ default='',
+ help='Path to look up table file',
+ required=False)
+
+parser.add_argument('--out',
+ default='measurements.pkl',
+ help='Output file for measurements (.pkl)',
+ required=False)
+
cli_args = parser.parse_args()
tcpa = tcp_async.UhdAsyncMsg()
diff --git a/lut_generator.ipynb b/lut_generator.ipynb
new file mode 100644
index 0000000..489203f
--- /dev/null
+++ b/lut_generator.ipynb
@@ -0,0 +1,184 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np, pandas as pd\n",
+ "import pickle\n",
+ "import os\n",
+ "\n",
+ "if not os.path.isdir(\"./lut_plot\"):\n",
+ " os.mkdir(\"./lut_plot\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def get_meas(path):\n",
+ " measurements = pickle.load(open(path, \"rb\"))\n",
+ " df = pd.DataFrame(measurements, columns=[\"ampl\",\"mag_gen_sq\",\"mag_feedback_sq\",\"phase_diff\"])\n",
+ " df[\"mag_gen\"] = np.sqrt(df[\"mag_gen_sq\"])\n",
+ " df[\"mag_feedback\"] = np.sqrt(df[\"mag_feedback_sq\"])\n",
+ " return df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df = get_meas(\"./measurements.pkl\")\n",
+ "df_lut = get_meas(\"./measurements_lut.pkl\")\n",
+ "df_lut_sq = get_meas(\"./measurements_lut_sq.pkl\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def get_slope(ampl, mag_feedback):\n",
+ " slope, intersect = np.polyfit(x = ampl[0:20], y = mag_feedback[0:20], deg = 1)\n",
+ " return slope, intersect\n",
+ "\n",
+ "#get_slope(df[\"ampl\"], df[\"mag_feedback\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def get_fac(ampl, mag_feedback):\n",
+ " slope, intersect = get_slope(df[\"ampl\", df[\"mag_feedback\"]])\n",
+ " return[(x*slope + intersect) / y for (x,y) in zip(df[\"ampl\"], df[\"mag_feedback\"])]\n",
+ "def interp(x): return np.interp(x, df[\"ampl\"], fac)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "x = np.linspace(0.1, 0.5, num = 50)\n",
+ "\n",
+ "plt.plot(df[\"ampl\"], df[\"mag_feedback\"], label=\"measurement\")\n",
+ "plt.plot(x, x*slope + intersect, label = \"linear model\")\n",
+ "\n",
+ "plt.legend(loc=0)\n",
+ "plt.title(\"Original Measurement\")\n",
+ "\n",
+ "plt.savefig(\"./lut_plot/original_measurement.png\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "slope, intersect = get_slope(df[\"ampl\"], df[\"mag_feedback\"])\n",
+ "\n",
+ "plt.plot(df_lut[\"ampl\"], df_lut[\"mag_feedback\"], label=\"measurement\")\n",
+ "plt.plot(x, x*slope + intersect, label = \"linear model\")\n",
+ "\n",
+ "plt.legend(loc=0)\n",
+ "plt.title(\"Lut Measurement\")\n",
+ "\n",
+ "plt.savefig(\"./lut_plot/lut_measurement.png\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "slope, intersect = get_slope(df[\"ampl\"], df[\"mag_feedback\"])\n",
+ "\n",
+ "plt.plot(df_lut_sq[\"ampl\"], df_lut_sq[\"mag_feedback\"], label=\"measurement\")\n",
+ "plt.plot(x, x*slope + intersect, label = \"linear model\")\n",
+ "\n",
+ "plt.legend(loc=0)\n",
+ "plt.title(\"Lut Squared Measurement\")\n",
+ "\n",
+ "plt.savefig(\"./lut_plot/lut_sq_measurement.png\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "slope, intersect = get_slope(df[\"ampl\"], df[\"mag_feedback\"])\n",
+ "\n",
+ "plt.plot(df[\"ampl\"], df[\"mag_feedback\"], label=\"measurement\")\n",
+ "plt.plot(df_lut[\"ampl\"], df_lut[\"mag_feedback\"], label=\"measurement lut\")\n",
+ "plt.plot(df_lut_sq[\"ampl\"], df_lut_sq[\"mag_feedback\"], label=\"measurement lut sq\")\n",
+ "plt.plot(x, x*slope + intersect, label = \"linear model\")\n",
+ "\n",
+ "plt.legend(loc=0)\n",
+ "plt.title(\"All Measurements\")\n",
+ "\n",
+ "plt.savefig(\"./lut_plot/all_measurement.png\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "pickle.dump({\"ampl\":df[\"ampl\"],\"fac\":[f for f in fac]}, open(\"lut.pkl\", \"wb\"))\n",
+ "pickle.dump({\"ampl\":df[\"ampl\"],\"fac\":[f**2 for f in fac]}, open(\"lut_sq.pkl\", \"wb\"))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/tcp_async.py b/tcp_async.py
index 4697437..d09cf70 100644
--- a/tcp_async.py
+++ b/tcp_async.py
@@ -22,7 +22,8 @@ class TcpAsyncClient(threading.Thread):
#Establish connection
- sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
+ sock = None
+ print("Connecting to asynchronous uhd message tcp port " + str(self.port))
while 1:
try:
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
@@ -33,6 +34,7 @@ class TcpAsyncClient(threading.Thread):
#traceback.print_exc()
sock.close()
time.sleep(0.5)
+ print("Connected to asynchronous uhd message tcp port " + str(self.port))
#Read messages
sock.settimeout(1)